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The total-pressure loss in gas turbines is evaluated. Reynolds-averaged Navier–Stokes equations are used for
numerical calculations. The Spalart–Allmaras model, the k–ε model, and the two-layer model and their differ-
ent modifications allowing for the rotation of the flow and the curvature of streamlines are used to close
these equations. The role of different corrections to the turbulence models for the accuracy of calculated es-
timates is elucidated.

Introduction. When modern gas-turbine engines are created, it is impossible, in practice, to avoid using nu-
merical methods of calculation of the internal turbulent flows and heat exchange of a viscous compressible gas in re-
gions of complex geometric configuration.

Calculation of flows in gas-turbine engines involves the modeling of turbulent heat exchange under the influ-
ence of favorable and unfavorable pressure gradients, free convection, flows with allowance for the rotation and swirl
of the flow, surface roughness, the interaction of vortex structures with the surface, etc. [1, 2]. The trend shown by
the gas temperature at the inlet of the blade passage toward increasing to T = 1800–2000 K makes it necessary to en-
sure the appropriate cooling of the surfaces in flow (the injection of a cold gas into the boundary layer and film cool-
ing are, particularly, used).

One basic factor exerting an influence on the efficiency of combustion of fuel is the total-pressure loss. The
loss in gas turbines is due to the formation of boundary layers on the walls, the occurrence of shock-wave structures
for large Mach numbers, the mixing of flows behind turbine blades, and to secondary flows and is dependent on many
factors, in particular on the parameters of the flow at the channel inlet, the turbine-blade angle, and the airfoil shape.
Experimental investigations [3, 4] have made it possible to elucidate the mechanisms of loss and to reveal the role of
individual factors.

Theoretical computation of the energy loss caused by the flow passing through the grid is usually reduced to
determination of the potential pressure distribution along the blade contour, calculation of the laminar and turbulent
boundary layers on the airfoil, and computation of the energy loss by mixing in cocurrent flow behind the grid. The state
of the art in methods of computational gas dynamics enables one to evaluate the loss in gas turbines on the basis of a
complex approach. In computational investigations, the standard k–ε turbulence model and the method of wall functions
are mainly used, which makes it impossible to obtain accurate and reliable estimates of the total-pressure loss [5, 6].

In this work, on the basis of the results of numerical modeling of turbulent flows of a viscous compressible
gas, we evaluate the total-pressure loss for two configurations of a blade passage (low- and high-pressure turbines) and
draw conclusions on their correctness. To close Reynolds equations we use different turbulence models (Spalart–Allma-
ras model, the k–ε model, and the two-layer model) and elucidate the role of different corrections for the accuracy of
calculations. To numerically solve the problem we use the condition of spacing of flow.

Basic Equations. In the Cartesian coordinate system (x, y, z), nonstationary flow of a compressible gas is de-
scribed by the equation

∂Q
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 + 
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 + 
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 = 0 ,
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which is supplemented with the gas equation
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The components of the viscous-stress tensor and the components of the heat-flux vector are found from the relations

τij = µef 
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The effective viscosity and thermal conductivity represent the sum of molecular and turbulent transfer coeffi-
cients

µef = µ + µt ,   λef = cp 
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To obtain the value of molecular viscosity as a function of temperature we use the Sutherland law
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where µ∗ = 1.68⋅10−1 kg ⁄ (m⋅sec), T∗ = 273 K, and B = 110.5 K for air. The molecular thermal conductivity is related
to the Prandtl number. The molecular and turbulent Prandtl numbers are assigned constant values (Pr = 0.72 and Prt
= 0.9 for air).

Turbulence Models. For calculation of the turbulent viscosity (or related quantities) we use different turbu-
lence models.

Standard k–ε model. The equations of the turbulence model are written in the Launder–Spalding formulation
[7] with a Kato–Launder correction for the term of turbulence production [8] and a correction for the curvature of
streamlines [9, 10].

In the model [7], the turbulence-generation term is found from the relation

P = µt S
2
 ,   S = (2SijSij)

1 ⁄ 2 .

To allow for the rotation of the flow, we modify it as follows [8]:

P = µt SΩ ,   Ω = (2ΩijΩij)
1 ⁄ 2 .

904



The components of the strain-rate tensor and the vorticity are computed from the formulas
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Summation over double subscripts is assumed.
To allow for the curvature of streamlines we introduce, into the formula for calculation of the turbulent vis-

cosity, the damping function [9]

µt = cµρ 
k

2

ε
 f (Rit) ,   f (Rit) = 

1
1 + cRit

 .

For calculation of the turbulent Richardson number we use the formula [10]
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The local radius of curvature is found from the relation

R = 
1

r
..


 = 











∂2
x

∂s
2





 2

 + 




∂2
y

∂s
2





 2

 + 




∂2
z

∂s
2





 2






 −1 ⁄ 2

 .

By s we mean the coordinate reckoned along the streamline (q = ds ⁄ dt). The tangent, the normal, and the binormal to
the streamline are found from the Frenet triangle formulas:
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r
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As a result, the formula for calculation of the Richardson number takes the form [10]
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Two-layer model. In the model [11], the wall region is subdivided into two subregions the boundary between
which is dependent on the local Reynolds number Rey = ρk1 ⁄ 2y ⁄ µ. The standard k–ε model [7] is used for Rey > Rey∗,
whereas the one-parameter k–l turbulence model [12] is used for Rey < Rey∗. We take Rey∗ = 180.

Spalart–Allmaras model. In the model [13], the vorticity

H = Ω

is used for calculation of the source term related to the generation of turbulent viscosity. Also, the modified form of
representation of the source term

H = Ω + 2 min 

0, S − Ω





is used.
Boundary Conditions on the Wall. To obtain the parameters of the flow near the wall we use the method

of wall functions [7] (for the k–ε model) and [14] (for the Spalart–Allmaras model). The condition ∂k ⁄ ∂n = 0 is set
on the wall in the case where the two-layer model is used. No boundary condition on the wall is required for the dis-
sipative function.
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For the method of wall functions to be realized, it is necessary that y+ >> 1. The use of the two-layer model
requires that y+ D 1, where y+ = yuτ ⁄ ν, uτ = (τw

 ⁄ ρ)1 ⁄ 2.
Total-Pressure Loss. In the one-dimensional case the total-pressure-loss factor is computed from the formula

L = 
p01 − p02

ρ1u1
2 ⁄ 2

or

L = 
p01 − p02

p01 − p1
 .

The above relations give identical values for incompressible flow. The difference between them increases with Mach
number at entry into the computational domain (it amounts to 4% for M = 0.4). For incompressible flow, we easily
obtain the relationship between the total-pressure-loss factor and the pressure coefficient

L = 1 − 

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2

 − Cp .

The pressure coefficient is expressed by the difference of static pressures and the velocity head:

Cp = 
p2 − p1

ρ1u1
2 ⁄ 2

 . 

To calculate the total-pressure loss in the three-dimensional case we use the same relations but expressed by
the averaged quantities [2]. In particular, one widely uses the following determination:

L = 
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p01
 ,
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 �
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Numerical Method. Discretization of the Navier–Stokes equations and the equations of the turbulence model
is carried out on an unstructured grid using the control-volume method [15]. A five-step Runge–Kutta method is used
for discretization of time derivatives. Convective terms are discretized on the basis of the MUSCL scheme of 2nd
order written with the use of the diagram of normalized variables [16] (the minmod flow limiter is used). Centered
difference formulas of 2nd order are used for discretization of diffusion flows.

The system of difference equations is solved by the multigrid method on the basis of the total-approximation
scheme (four grid levels and a V cycle are used).

Calculation Results. We consider two different configurations of the computational domain which correspond
to low- and high-pressure turbines.

Low-pressure turbine. The geometry of the blade passage of a low-pressure turbine is shown in Fig. 1a. Gas
enters the computational domain through the boundary ABCD at which we prescribe the flow velocity in parallel to
the upper and low boundaries (q = 38.80 m ⁄ sec), the total-pressure profile p0 = p0(z) shown in Fig. 1b (p0m =
4.27⋅104 Pa), the stagnation temperature (T0 = 298 K), and the characteristics of turbulence. The latter include the
value of the modified turbulent viscosity for the Spalart–Allmaras model (ν~0 = 10−4 m2 ⁄ sec) and the values of the ki-
netic turbulence energy and the rate of its dissipation for the k–ε model (k0 = 10−4 m2 ⁄ sec2 and ε0 = 10−3 m2 ⁄ sec3).
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The static pressure (p = 3.08⋅104 Pa) is prescribed at the outlet boundary EFGH. At the boundaries ABFE and DCGH
and on the airfoil surface, we set the boundary sticking and nonflow conditions for the tangential and normal velocity
components and the wall temperature (Tw = 300 K). Periodic boundary conditions are used at the boundaries BFGC
and AEHD.

The calculations are carried out on an unstructured grid containing 105,066 nodes and 95,760 cells (Fig. 2).
The inlet and outlet boundaries contain 1368 cells, whereas the periodic boundaries contain 3268 cells; the wall in-
cludes 8992 cells.

The total-pressure distributions in the midle cross section of the outlet boundary and the total-pressure-loss
factor as a function of the number of iterations, which have been obtained on the basis of different turbulence models,
are shown in Fig. 3. The standard Spalart–Allmaras model and its modified version enable us to reach the prescribed
level of discrepancy after 94 and 96 iterations. When the standard k–ε model is used, the convergence is incomplete
(the discrepancy exceeds the prescribed value after 1000 multigrid cycles); the introduction of a correction for stream-
line curvature gives convergence after 164 iterations.

Fig. 1. Blade passage of a low-pressure turbine: the geometry of the computa-
tional domain (a) and the total-pressure profile in the inlet cross section (b).

Fig. 2. Computational grid (a) and the grid in the middle cross section (b).

TABLE 1. Total-Pressure-Loss Factor (Low-Pressure Turbine)

Model L, %

Experiment [17] 2.1205

Spalart–Allmaras model 2.1225

k–ε model with a Kato–Launder correction 2.0335

k–ε model with a correction for streamline curvature 2.1186

Two-layer model 2.0681
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Data on the total-pressure loss are summarized in Table 1 and are compared to the results of measurements
[17]. The difference in the results obtained on the basis of the Spalart–Allmaras models and different versions of the
k–ε model amounts to nearly 2%. The error obtained on the basis of the turbulence model is attributed to the insuffi-
cient grid resolution in the boundary layer.

High-pressure turbine. The geometry of the blade passage of a high-pressure turbine is shown in Fig. 4a. In
the inlet cross section of the computational domain, we prescribe the radial profiles of the total pressure p0 = p0(r)
(p0m = 3.44⋅105 Pa), the stagnation temperature T0 = T0(r) (T0m = 373 K), and the angle showing the flow direction
ϕ0 = ϕ0(r) (Fig. 4b, c, and d) and the value of the modified turbulent viscosity for the Spalart–Allmaras model (ν~0 =
8.8⋅10−5 m2 ⁄ sec) or the value of the kinetic turbulence energy and the rate of its dissipation for the k–ε model (k0 =
10−4 m2 ⁄ sec2 and ε0 = 10−3 m2 ⁄ sec3). The radial static-pressure profile p = p(r) (pm = 2.2⋅105 Pa) is used in the out-
let cross section; no other boundary conditions are required here (Fig. 4d).

Fig. 3. Total-pressure loss in the outlet cross section (a) and the change in the
total-pressure-loss factor as a function of the number of iterations (b): 1)
Spalart–Allmaras model; 2) k–ε model; 3) k–ε model with a correction for
streamline curvature; points, two-layer model.

Fig. 4. Blade passage of a high-pressure turbine:  the geometry of the com-
putational domain (a), the radial profiles of the total pressure (b), the stag-
nation temperature (c), and the angle prescribing the flow direction (d) in
the inlet cross section and the radial profile of the static pressure in the
outlet cross section (e).
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Boundary sticking and nonflow conditions for the tangential and normal velocity components and the wall
temperature (Tw = 298 K) are set on the walls and the surface of the turbine blade. Periodic boundary conditions are
used at the left and right boundaries.

Calculations are carried out on a hybrid grid (Fig. 5) containing 123,765 nodes and 113,328 cells of which
20,480 cells are arranged at the boundary. The structured part of the grid near the airfoil has dimensions 95 × 41 ×
37. The inlet boundary contains 4001 cells, the outlet boundary contains 5001 cells, the periodic boundaries contain
3384 cells, the lower and upper walls contain 3148 cells, and the airfoil surface contains 4336 cells.

Fig. 5. Computational grid (a) (1) inlet boundary and 2) outlet boundary) and
the grid in the middle cross section (b).

Fig. 6. Radial distributions of the static (a) and total (b) pressures in the outlet
cross section: 1) Spalart–Allmaras model; 2) k–ε model.

Fig. 7. Radial distributions of the swirl angle in the inlet (a) and outlet (b)
cross sections: 1) Spalart–Allmaras model; 2) k–ε model.
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The distributions of the flow characteristics sought are shown in Figs. 6 and 7. Whereas the turbulence mod-
els give nearly identical distributions of total pressure in the outlet cross section (Fig. 6b), the distributions of the swirl
angle of the flow differ (Fig. 7b) mainly near the walls of the blade passage.

The total-pressure-loss factor as a function of the number of iterations is plotted in Fig. 8. The difference be-
tween the results obtained on the basis of the Spalart–Allmaras model and the k–ε model amounts to about 10%.

Data on the total-pressure loss are summarized in Table 2 and are compared to measurement results [17]. The
introduction of Kato–Launder corrections and a correction for the curvature of streamlines improves the calculated es-
timates of the total pressure, obtained on the basis of the k–ε turbulence model.

Conclusions. On the basis of the results of numerical modeling of the turbulent flows of a viscous compress-
ible gas, we have evaluated the total-pressure loss for two configurations of the blade passage (low- and high-pressure
turbines) and have drawn conclusions on their correctness. It has been shown that the introduction of corrections for
the curvature of streamlines and for rotation improves the properties of the k–ε model and the Spalart–Allmaras model.
The results obtained can be used for improving the efficiency of gas-turbine plants, whereas the numerical method de-
veloped can be applied to their optimization.

NOTATION

A, cross-sectional area, m2; b, binormal vector; B, constant in the Sutherland law, K; c, constant; cp, specific
heat at constant pressure, J ⁄ (kg⋅K); cµ, constant in the turbulence model; Cp, pressure coefficient; e, total energy of a
unit mass, J ⁄ kg; f, damping function; F, flow vector; h, heat-flux density, W ⁄ m2; H, source term; k, kinetic turbulence
energy, m2 ⁄ sec2; l, linear scale, m; L, total-pressure-loss factor, %; n, number of iterations; n, normal vector; M, Mach
number; p, pressure, Pa; P, term of turbulence generation, m2 ⁄ sec3; Pr, Prandtl number; q, velocity value, m/sec; q,

Fig. 8. Change in the total-pressure-loss factor as a function of the number of
iterations: 1) Spalart–Allmaras model; 2) k–ε model with a Kato–Launder cor-
rection; 3) k–ε model without a Kato–Launder correction, points, k–ε model
with a correction for streamline curvature.

TABLE 2. Total-Pressure-Loss Factor (High-Pressure Turbine)

Model
L, %

n = 400 n = 1000

Experiment [17] 3.1002 3.1002

Spalart–Allmaras model 3.1416 3.1416

Modified Spalart–Allmaras model 3.1153 3.1153

k–ε model with a Kato–Launder correction 2.8212 2.8166

k–ε model without a Kato–Launder correction 2.8489 2.8304

k–ε model with a correction for streamline curvature 2.8294 2.8405
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velocity vector, m ⁄ sec; Q, vector of conservative variables; r, radial coordinate, m; r, radius vector, m; R, radius of
curvature, m; Re, Reynolds number; Ri, Richardson number; s, coordinate reckoned along the streamline, m; S, strain-
rate tensor; t, time, sec; T, temperature, K; u, average velocity, m ⁄ sec; uτ, dynamic velocity, m ⁄ sec; vx, vy, and vz,
velocity components, m ⁄ sec; x, y, z, Cartesian coordinates, m; γ, ratio of specific heats; δij, Kronecker symbol; ε, rate
of dissipation of turbulent energy m2 ⁄ sec3; λ, thermal conductivity, W ⁄ (m⋅K); µ, dynamic viscosity, kg ⁄ (m⋅sec); ν, ki-
nematic viscosity, m2 ⁄ sec; ρ, density, kg ⁄ m3; τ, tangential stress, N ⁄ m; ττ , tangential vector; ϕ, angle prescribing the
flow direction, deg; ω, vortex; Ω, vorticity. Subscripts and superscripts: ef, effective parameters of a turbulent flow; i,
j, and k, tensor indices; m, maximum; t, parameters of a turbulent flow; x, y, and z, projections on the coordinate axis;
w, wall; τ, shear stress; 0, stagnation parameters; 1 and 2, inlet and outlet cross sections; *, critical parameters; +, di-
mensionless parameters in the boundary layer; ⋅, time derivative; D, modified turbulent viscosity.
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